Data-Adaptive Selection of the Propensity Score Truncation Level for Inverse-Probability–Weighted and Targeted Maximum Likelihood Estimators of Marginal Point Treatment Effects

Author:

Gruber Susan,Phillips Rachael V,Lee Hana,van der Laan Mark J

Abstract

Abstract Inverse probability weighting (IPW) and targeted maximum likelihood estimation (TMLE) are methodologies that can adjust for confounding and selection bias and are often used for causal inference. Both estimators rely on the positivity assumption that within strata of confounders there is a positive probability of receiving treatment at all levels under consideration. Practical applications of IPW require finite inverse probability (IP) weights. TMLE requires that propensity scores (PS) be bounded away from 0 and 1. Although truncation can improve variance and finite sample bias, this artificial distortion of the IP weights and PS distribution introduces asymptotic bias. As sample size grows, truncation-induced bias eventually swamps variance, rendering nominal confidence interval coverage and hypothesis tests invalid. We present a simple truncation strategy based on the sample size, n, that sets the upper bound on IP weights at $\sqrt{\textit{n}}$ ln n/5. For TMLE, the lower bound on the PS should be set to 5/($\sqrt{\textit{n}}$ ln n/5). Our strategy was designed to optimize the mean squared error of the parameter estimate. It naturally extends to data structures with missing outcomes. Simulation studies and a data analysis demonstrate our strategy’s ability to minimize both bias and mean squared error in comparison with other common strategies, including the popular but flawed quantile-based heuristic.

Publisher

Oxford University Press (OUP)

Subject

Epidemiology

Reference24 articles.

1. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men;Hernán;Epidemiology.,2000

2. Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data;Kang;Stat Sci.,2007

3. Weighting regressions by propensity scores;Freedman;Eval Rev.,2008

4. Constructing inverse probability weights for marginal structural models;Cole;Am J Epidemiol.,2008

5. Diagnosing and responding to violations in the positivity assumption;Petersen;Stat Methods Med Res.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3