Predicting Species' Geographic Distributions Based on Ecological Niche Modeling

Author:

Peterson A. Townsend1

Affiliation:

1. Natural History Museum, The University of Kansas, Lawrence, Kansas 66045

Abstract

Abstract Recent developments in geographic information systems and their application to conservation biology open doors to exciting new synthetic analyses. Exploration of these possibilities, however, is limited by the quality of information available: most biodiversity data are incomplete and characterized by biased sampling. Inferential procedures that provide robust and reliable predictions of species' geographic distributions thus become critical to biodiversity analyses. In this contribution, models of species' ecological niches are developed using an artificial-intelligence algorithm, and projected onto geography to predict species' distributions. To test the validity of this approach, I used North American Breeding Bird Survey data, with large sample sizes for many species. I omitted randomly selected states from model building, and tested models using the omitted states. For the 34 species tested, all predictions were highly statistically significant (all P < 0.001), indicating excellent predictive ability. This inferential capacity opens doors to many synthetic analyses based on primary point occurrence data. Predicción de Áreas de Distribución de Especies con Pase en Modelaje de Nichos Ecológicos Resumen. Avances recientes en los sistemas de información geográfica y su aplicación en la biología de conservación presentan la posibilidad de analisis nuevos y sintéticos. La exploración de estas posibilidades, de todas formas, se limita por la calidad de información disponible: la gran mayoria de datos respecto a la diversidad biológica son incompletos y sesgados. Por eso, procedimientos de inferencia que proveen predicciones robustas y confiables de distribuciones de especies se hacen importantes para los análisis de la biodiversidad. En esta contribución, se desarrollan modelos de los nichos ecológicos por medio de un algoritmo de inteligencia artificial, y los proyeccionamos en la geografía para predecir las distribuciones geográficas de especies. Para probar el método, se usan los datos del North American Breeding Bird Survey, con tamaños de muestra grande. Se construyeron modelos con base en 30 estados unidenses seleccionados al azar, y se probaron los modelos con base en los 20 estados restantes. De las 34 especies que se analizaron, todos mostraron un alto grado de significanza estadística (todos P < 0.001), lo cual indica un alto grado de predictividad. Esta capacidad de inferencia abre la puerta a varios analisis sintéticos con base en puntos conocidos de ocurrencia de especies.

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference19 articles.

1. Measurement of the realized quantitative niche: environmental niches of five Eucalyptus species.;Austin;Ecological Monographs,1990

2. A review of methods for the assessment of prediction errors in conservation presence/absence models.;Fielding;Environmental Conservation,1997

3. Field tests of theories concerning distributional control.;Grinnell;American Naturalist,1917

4. Homage to Santa Rosalia, or why are there so many kinds of animals?.;Hutchinson;American Naturalist,1959

5. Predicted vertebrate distributions from Gap Analysis: considerations in the designs of statewide accuracy assessments, p. 147–169.;Krohn,1996

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3