A review of methods for the assessment of prediction errors in conservation presence/absence models

Author:

FIELDING Alan H.,BELL JOHN F.

Abstract

Predicting the distribution of endangered species from habitat data is frequently perceived to be a useful technique. Models that predict the presence or absence of a species are normally judged by the number of prediction errors. These may be of two types: false positives and false negatives. Many of the prediction errors can be traced to ecological processes such as unsaturated habitat and species interactions. Consequently, if prediction errors are not placed in an ecological context the results of the model may be misleading. The simplest, and most widely used, measure of prediction accuracy is the number of correctly classified cases. There are other measures of prediction success that may be more appropriate. Strategies for assessing the causes and costs of these errors are discussed. A range of techniques for measuring error in presence/absence models, including some that are seldom used by ecologists (e.g. ROC plots and cost matrices), are described. A new approach to estimating prediction error, which is based on the spatial characteristics of the errors, is proposed. Thirteen recommendations are made to enable the objective selection of an error assessment technique for ecological presence/absence models.

Publisher

Cambridge University Press (CUP)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3