Thermal tolerance depends on season, age and body condition in imperilled redside dace Clinostomus elongatus

Author:

Turko Andy J123,Nolan Colby B4,Balshine Sigal2,Scott Graham R3,Pitcher Trevor E14

Affiliation:

1. Great Lakes Institute for Environmental Research, University of Windsor, 2990 Riverside Drive West, Windsor, ON, N9C 1A2, Canada

2. Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada

3. Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada

4. Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada

Abstract

Abstract Urbanization tends to increase water temperatures in streams and rivers and is hypothesized to be contributing to declines of many freshwater fishes. However, factors that influence individual variation in thermal tolerance, and how these may change seasonally, are not well understood. To address this knowledge gap, we studied redside dace Clinostomus elongatus, an imperilled stream fish native to rapidly urbanizing areas of eastern North America. In wild redside dace from rural Ohio, USA, acute upper thermal tolerance (i.e. critical thermal maximum, CTmax) ranged between ~34°C in summer (stream temperature ~22°C) and 27°C in winter (stream temperature ~2°C). Juveniles had higher CTmax than adults in spring and summer, but in winter, CTmax was higher in adults. Thermal safety margins (CTmax − ambient water temperature; ~11°C) were less than the increases in peak water temperature predicted for many redside dace streams due to the combined effects of climate change and urbanization. Furthermore, behavioural agitation occurred 5–6°C below CTmax. Safety margins were larger (>20°C) in autumn and winter. In addition, redside dace were more sensitive (2.5°C lower CTmax) than southern redbelly dace Chrosomus erythrogaster, a non-imperilled sympatric cyprinid. Body condition (Fulton’s K) of adult redside dace was positively correlated with CTmax, but in juveniles, this relationship was significant only in one of two summers of experiments. Next, we measured CTmax of captive redside dace fed experimentally manipulated diets. In adults, but not juveniles, CTmax was higher in fish fed a high- vs. low-ration diet, indicating a causal link between nutrition and thermal tolerance. We conclude that redside dace will be challenged by predicted future summer temperatures, especially in urbanized habitats. Thus, habitat restoration that mitigates temperature increases is likely to benefit redside dace. We also suggest habitat restoration that improves food availability may increase thermal tolerance, and thus population resilience.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3