Predicting responses to climate change using a joint species, spatially dependent physiologically guided abundance model

Author:

Custer Christopher A.1ORCID,North Joshua S.2,Schliep Erin M.3,Verhoeven Michael R.4,Hansen Gretchen J. A.4ORCID,Wagner Tyler5ORCID

Affiliation:

1. Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and Management The Pennsylvania State University University Park Pennsylvania USA

2. Climate and Ecosystem Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA

3. Department of Statistics North Carolina State University Raleigh North Carolina USA

4. Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota St. Paul Minnesota USA

5. U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit The Pennsylvania State University University Park Pennsylvania USA

Abstract

AbstractPredicting the effects of warming temperatures on the abundance and distribution of organisms under future climate scenarios often requires extrapolating species–environment correlations to climatic conditions not currently experienced by a species, which can result in unrealistic predictions. For poikilotherms, incorporating species' thermal physiology to inform extrapolations under novel thermal conditions can result in more realistic predictions. Furthermore, models that incorporate species and spatial dependencies may improve predictions by capturing correlations present in ecological data that are not accounted for by predictor variables. Here, we present a joint species, spatially dependent physiologically guided abundance (jsPGA) model for predicting multispecies responses to climate warming. The jsPGA model uses a basis function approach to capture both species and spatial dependencies. We apply the jsPGA model to predict the response of eight fish species to projected climate warming in thousands of lakes in Minnesota, USA. By the end of the century, the cold‐adapted species was predicted to have high probabilities of extirpation across its current range—with 10% of lakes currently inhabited by this species having an extirpation probability >0.90. The remaining species had varying levels of predicted changes in abundance, reflecting differences in their thermal physiology. Though the model did not identify many strong species dependencies, the variation in estimated spatial dependence across species suggested that accounting for both dependencies was important for predicting the abundance of these fishes. The jsPGA model provides a new tool for predicting changes in the abundance, distribution, and extirpation probability of poikilotherms under novel thermal conditions.

Funder

National Science Foundation

U.S. Geological Survey

Office of Science

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3