Wetland fishes avoid a carbon dioxide deterrent deployed in the field

Author:

Bzonek P A12,Mandrak N E12

Affiliation:

1. University of Toronto Department of Ecology and Evolutionary Biology, , 27 King's College Circle, Toronto, Ontario, M5S 1A1, Canada

2. University of Toronto Scarborough 1265 Military Trail Department of Biological Sciences, , Scarborough, Ontario, M1C 1A4, Canada

Abstract

Abstract Biological invasions are poorly controlled and contribute to the loss of ecosystem services and function. Altered watershed connectivity contributes to aquatic invasions, but such hydrologic connections have become important for human transport. Carbon dioxide (CO2) deterrents have been proposed to control the range expansion of invasive fishes, particularly through altered hydrologic connections, without impeding human transport. However, the effectiveness of CO2 deterrents needs to be further evaluated in the field, where fishes are situated in their natural environment and logistical challenges are present. We deployed a proof-of-concept CO2 deterrent within a trap-and-sort fishway in Cootes Paradise, Ontario, Canada, to determine the avoidance responses of fishes attempting to disperse into a wetland. We aimed to describe deterrent efficiency for our target species, common carp, and for native fishes dispersing into the wetland. Our inexpensive inline CO2 deterrent was deployed quickly and rapidly produced a CO2 plume of 60 mg/l. Over 2000 fishes, representing 13 species, were captured between 23 May and 8 July 2019. A generalized linear model determined that the catch rates of our target species, common carp (n = 1662), decreased significantly during deterrent activation, with catch rates falling from 2.56 to 0.26 individuals per hour. Aggregated catch rates for low-abundance species (n < 150 individuals per species) also decreased, while catch rates for non-target brown bullhead (n = 294) increased. Species did not express a phylogenetic signal in avoidance responses. These results indicate that CO2 deterrents produce a robust common carp avoidance response in the field. This pilot study deployed an inexpensive and rapidly operating deterrent, but to be a reliable management tool, permanent deterrents would need to produce a more concentrated CO2 plume with greater infrastructural support.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3