Using physiology to better support wild bee conservation

Author:

Leroy Clementine1,Brunet Jean-Luc1,Henry Mickael1,Alaux Cedric1

Affiliation:

1. INRAE , UR 406 Abeilles et Environnement, 84 914 Avignon, France

Abstract

Abstract There is accumulating evidence that wild bees are experiencing a decline in terms of species diversity, abundance or distribution, which leads to major concerns about the sustainability of both pollination services and intrinsic biodiversity. There is therefore an urgent need to better understand the drivers of their decline, as well as design conservation strategies. In this context, the current approach consists of linking observed occurrence and distribution data of species to environmental features. While useful, a highly complementary approach would be the use of new biological metrics that can link individual bee responses to environmental alteration with population-level responses, which could communicate the actual bee sensitivity to environmental changes and act as early warning signals of bee population decline or sustainability. We discuss here through several examples how the measurement of bee physiological traits or performance can play this role not only in better assessing the impact of anthropogenic pressures on bees, but also in guiding conservation practices with the help of the documentation of species’ physiological needs. Last but not least, because physiological changes generally occur well in advance of demographic changes, we argue that physiological traits can help in predicting and anticipating future population trends, which would represent a more proactive approach to conservation. In conclusion, we believe that future efforts to combine physiological, ecological and population-level knowledge will provide meaningful contributions to wild bee conservation-based research.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3