Abstract
AbstractPesticide use is one of the main causes of pollinator declines in agricultural ecosystems. Traditionally, most laboratory studies on bee ecotoxicology test acute exposure to single compounds. However, under field conditions, bees are often chronically exposed to a variety of chemicals, with potential synergistic effects. We studied the effects of field-realistic concentrations of three pesticides measured in pollen and nectar of commercial melon fields on the solitary bee Osmia bicornis L. We orally exposed females of this species throughout their life span to 8 treatments combining two neonicotinoid insecticides (acetamiprid, imidacloprid) and a triazole fungicide (myclobutanil) via pollen and sugar syrup. We measured pollen and syrup consumption, longevity, ovary maturation and thermogenesis. Although bees consumed larger amounts of syrup than pollen, pesticide intake via syrup and pollen were similar. At the tested concentrations, no synergistic effects emerged, and we found no effects on longevity and ovary maturation. However, all treatments containing imidacloprid resulted in suppressed syrup consumption and drastic decreases in thoracic temperature and bee activity. Our results have important implications for pesticide regulation. If we had measured only lethal effects we would have wrongly concluded that the pesticide combinations containing imidacloprid were safe to O. bicornis. The incorporation of tests specifically intended to detect sublethal effects in bee risk assessment schemes should be an urgent priority. In this way, the effects of pesticide exposure on the dynamics of bee populations in agroecosystems will be better assessed.
Funder
Ministerio de Economía y Competitividad
Publisher
Springer Science and Business Media LLC
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献