Distinct evolutionary pathways for the synthesis and function of tRNA modifications

Author:

Kimura Satoshi1ORCID

Affiliation:

1. Dr Matthew Waldor’s lab at the Brigham and Women’s Hospital. He completed his PhD and early postdoc work in Dr Tsutomu Suzuki’s lab at the University of Tokyo

Abstract

Abstract Transfer ribonucleicacids (RNAs) (tRNAs) are essential adaptor molecules for translation. The functions and stability of tRNAs are modulated by their post-transcriptional modifications (tRNA modifications). Each domain of life has a specific set of modifications that include ones shared in multiple domains and ones specific to a domain. In some cases, different tRNA modifications across domains have similar functions to each other. Recent studies uncovered that distinct enzymes synthesize the same modification in different organisms, suggesting that such modifications are acquired through independent evolution. In this short review, I outline the mechanisms by which various modifications contribute to tRNA function, including modulation of decoding and tRNA stability, using recent findings. I also focus on modifications that are synthesized by distinct biosynthetic pathways.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Biochemistry,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3