Extensively Drug-Resistant Pseudomonas aeruginosa ST309 Harboring Tandem Guiana Extended Spectrum β-Lactamase Enzymes: A Newly Emerging Threat in the United States

Author:

Khan Ayesha12,Tran Truc T13,Rios Rafael4,Hanson Blake135,Shropshire William C15,Sun Zhizeng6,Diaz Lorena14,Dinh An Q13,Wanger Audrey12,Ostrosky-Zeichner Luis13,Palzkill Timothy6,Arias Cesar A12354,Miller William R13ORCID

Affiliation:

1. Center for Antimicrobial Resistance and Microbial Genomics, McGovern School of Medicine, Houston

2. Department of Microbiology and Molecular Genetics, McGovern School of Medicine, Houston

3. Division of Infectious Diseases, University of Texas Health Science Center, McGovern School of Medicine, Houston

4. Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia

5. Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston

6. Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas

Abstract

Abstract Background Treatment of serious infections due to multidrug-resistant (MDR) Pseudomonas aeruginosa remains a challenge, despite the introduction of novel therapeutics. In this study, we report 2 extensively drug-resistant clinical isolates of sequence type (ST) 309 P aeruginosa resistant to all β-lactams, including the novel combinations ceftolozane/tazobactam, ceftazidime/avibactam, and meropenem/vaborbactam. Methods Isolates were sequenced using both short-read (Illumina) and long-read technology to identify resistance determinants, polymorphisms (compared with P aeruginosa PAO1), and reconstruct a phylogenetic tree. A pair of β-lactamases, Guiana extended spectrum β-lactamase (GES)-19 and GES-26, were cloned and expressed in a laboratory strain of Escherichia coli to examine their relative impact on resistance. Using cell lysates from E coli expressing the GES genes individually and in tandem, we determined relative rates of hydrolysis for nitrocefin and ceftazidime. Results Two ST309 P aeruginosa clinical isolates were found to harbor the extended spectrum β-lactamases GES-19 and GES-26 clustered in tandem on a chromosomal class 1 integron. The presence of both enzymes in E coli was associated with significantly elevated minimum inhibitory concentrations to aztreonam, cefepime, meropenem, ceftazidime/avibactam, and ceftolozane/tazobactam, compared with those expressed individually. The combination of ceftazidime/avibactam plus aztreonam was active in vitro and used to achieve cure in one patient. Phylogenetic analysis revealed ST309 P aeruginosa are closely related to MDR strains from Mexico also carrying tandem GES. Conclusions The presence of tandem GES-19 and GES-26 is associated with resistance to all β-lactams, including ceftolozane/tazobactam. Phylogenetic analysis suggests that ST309 P aeruginosa may be an emerging threat in the United States.

Funder

National Institutes of Health

UTHealth Presidential Award

University of Texas System STARS Award

UTHealth Center for Antimicrobial Resistance and Microbial Genomics

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3