Genomic regions and biological pathways associated with sex-limited reproductive traits in bovine species

Author:

Olasege Babatunde S12ORCID,Oh Zhen Yin1,Tahir Muhammad S12,Porto-Neto Laercio R2,Hayes Ben J3,Fortes Marina R S13ORCID

Affiliation:

1. The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus , Brisbane, QLD, 4072 , Australia

2. Ag and Food, CSIRO Agriculture and Food, Saint Lucia , QLD, 4067 , Australia

3. The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia Campus , Brisbane, QLD, 4072 , Australia

Abstract

Abstract Many animal species exhibit sex-limited traits, where certain phenotypes are exclusively expressed in one sex. Yet, the genomic regions that contribute to these sex-limited traits in males and females remain a subject of debate. Reproductive traits are ideal phenotypes to study sexual differences since they are mostly expressed in a sex-limited way. Therefore, this study aims to use local correlation analyses to identify genomic regions and biological pathways significantly associated with male and female sex-limited traits in two distinct cattle breeds (Brahman [BB] and Tropical Composite [TC]). We used the Correlation Scan method to perform local correlation analysis on 42 trait pairs consisting of six female and seven male reproductive traits recorded on ~1,000 animals for each sex in each breed. To pinpoint a specific region associated with these sex-limited reproductive traits, we investigated the genomic region(s) consistently identified as significant across the 42 trait pairs in each breed. The genes found in the identified regions were subjected to Quantitative Trait Loci (QTL) colocalization, QTL enrichment analyses, and functional analyses to gain biological insight into sexual differences. We found that the genomic regions associated with the sex-limited reproductive phenotypes are widely distributed across all the chromosomes. However, no single region across the genome was associated with all the 42 reproductive trait pairs in the two breeds. Nevertheless, we found a region on the X-chromosome to be most significant for 80% to 90% (BB: 33 and TC: 38) of the total 42 trait pairs. A considerable number of the genes in this region were regulatory genes. By considering only genomic regions that were significant for at least 50% of the 42 trait pairs, we observed more regions spread across the autosomes and the X-chromosome. All genomic regions identified were highly enriched for trait-specific QTL linked to sex-limited traits (percentage of normal sperm, metabolic weight, average daily gain, carcass weight, age at puberty, etc.). The gene list created from these identified regions was enriched for biological pathways that contribute to the observed differences between sexes. Our results demonstrate that genomic regions associated with male and female sex-limited reproductive traits are distributed across the genome. Yet, chromosome X seems to exert a relatively larger effect on the phenotypic variation observed between the sexes.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3