Quantitative nanoscale mapping of three-phase thermal conductivities in filled skutterudites via scanning thermal microscopy

Author:

Nasr Esfahani Ehsan12ORCID,Ma Feiyue1,Wang Shanyu3,Ou Yun2,Yang Jihui3,Li Jiangyu12ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA

2. Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

3. Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA

Abstract

Abstract In the last two decades, a nanostructuring paradigm has been successfully applied in a wide range of thermoelectric materials, resulting in significant reduction in thermal conductivity and superior thermoelectric performance. These advances, however, have been accomplished without directly investigating the local thermoelectric properties, even though local electric current can be mapped with high spatial resolution. In fact, there still lacks an effective method that links the macroscopic thermoelectric performance to the local microstructures and properties. Here, we show that local thermal conductivity can be mapped quantitatively with good accuracy, nanometer resolution and one-to-one correspondence to the microstructure using a three-phase skutterudite as a model system. Scanning thermal microscopy combined with finite element simulations demonstrate close correlation between sample conductivity and probe resistance, enabling us to distinguish thermal conductivities spanning orders of magnitude, yet resolving thermal variation across a phase interface with small contrast. The technique thus provides a powerful tool to correlate local thermal conductivities, microstructures and macroscopic properties for nanostructured materials in general and nanostructured thermoelectrics in particular.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

US National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3