Realizing the Accurate Measurements of Thermal Conductivity over a Wide Range by Scanning Thermal Microscopy Combined with Quantitative Prediction of Thermal Contact Resistance

Author:

Zhang Qingqing1,Zhu Wei23ORCID,Zhou Jie1,Deng Yuan23

Affiliation:

1. School of Materials Science and Engineering Beihang University Beijing 100191 China

2. Research Institute for Frontier Science Beihang University Beijing 100191 China

3. Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province Hangzhou Innovation Institute of Beihang University Hangzhou 310051 China

Abstract

AbstractQuantitative thermal performance measurements and thermal management at the micro‐/nano scale are becoming increasingly important as the size of electronic components shrinks. Scanning thermal microscopy (SThM) is an emerging method with high spatial resolution that accurately reflects changes in local thermal signals based on a thermally sensitive probe. However, because of the unclear thermal resistance at the probe‐sample interface, quantitative characterization of thermal conductivity for different kinds of materials still remains limited. In this paper, the heat transfer process considering the thermal contact resistance between the probe and sample surface is analyzed using finite element simulation and thermal resistance network model. On this basis, a mathematical empirical function is developed applicable to a variety of material systems, which depicts the relationship between the thermal conductivity of the sample and the probe temperature. The proposed model is verified by measuring ten materials with a wide thermal conductivity range, and then further validated by two materials with unknown thermal conductivity. In conclusion, this work provides the prospect of achieving quantitative characterization of thermal conductivity over a wide range and further enables the mapping of local thermal conductivity to microstructures or phases of materials.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3