Rapid Shifts in the Temperature Dependence of Locomotor Performance in an Invasive Frog, Xenopus laevis, Implications for Conservation

Author:

Araspin Laurie12,Martinez Anna Serra1,Wagener Carla2,Courant Julien1,Louppe Vivien3,Padilla Pablo14,Measey John2,Herrel Anthony1ORCID

Affiliation:

1. Bâtiment d’Anatomie Comparée, UMR 7179-CNRS, Département Adaptations du Vivant, Muséum National d’Histoire Naturelle-Sorbonne Universités (MNHN), 55 rue Buffon, 75005 Paris, France

2. Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7602, South Africa

3. Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National, d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 51, 75231 Paris, France

4. Behavioural Biology Group, Laboratory of Fish and Amphibian Ethology, Freshwater and OCeanic Science Unit of reSearch (FOCUS), University of Liège, 4020 Liège, Belgium

Abstract

Abstract Temperature is a critical abiotic factor impacting all aspects of the biology of organisms, especially in ectotherms. As such, it is an important determinant of the potential invasive ability of organisms and may limit population expansion unless organisms can physiologically respond to changes in temperature either through plasticity or by adapting to their novel environment. Here, we studied the African clawed frog, Xenopus laevis, which has become invasive on a global scale. We compared adults from an invasive population of western France with individuals from two populations in the native range in South Africa. We measured the thermal dependence of locomotor performance in adults given its relevance to dispersal, predator escape, and prey capture. Our results show significant differences in the limits of the 80% performance breadth interval for endurance with the French population showing a left shift in its limits congruent with the colder climate experienced in France. The French invasive population was introduced only about 40 years ago suggesting a rapid shift in the thermal physiology. Given that all individuals were acclimated under laboratory conditions at 23°C for 2 months this suggests that the invasive frogs have adapted to their new environment. These data may allow the refinement of physiologically informed species distribution models permitting better estimates of future ranges at risk of invasion.

Funder

ERA-Net BiodivERsA

INVAXEN

national funders Agence nationale de la recherche

ANR

Deutsche Forschungsgemeinschaft

DFG

Belgian Federal Science Policy Office

BELSPO

Fundação para a Ciência e a Tecnologia

FCT

National Research Foundation of South Africa

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3