Does aquatic performance predict terrestrial performance: a case study with an aquatic frog, Xenopus laevis

Author:

Araspin Laurie12ORCID,Measey John23ORCID,Herrel Anthony1456ORCID

Affiliation:

1. UMR 7179 CNRS/MNHN 1 , Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris , France

2. Centre for Invasion Biology, Stellenbosch University 2 , Stellenbosch , South Africa

3. Centre for Invasion Biology, Institute for Biodiversity, Yunnan University 3 , Kunming 650106 , China

4. Ghent University 4 Department of Biology, Evolutionary Morphology of Vertebrates , , 9000 Ghent , Belgium

5. University of Antwerp 5 Department of Biology , , Antwerpen 2610 , Belgium

6. Naturhistorisches Museum Bern 6 , 3005 Bern , Switzerland

Abstract

ABSTRACT The physical properties of the environment impose strong selection on organisms and their form–function relationships. In water and on land, selective pressures differ, with water being more viscous and denser than air, and gravity being the most important external force on land for relatively large animals such as vertebrates. These different properties of the environment could drive variation in the design and mechanics of the locomotor system of organisms. Animals that use multiple environments can consequently exhibit locomotion conflicts between the demands imposed by the media, leading to potential trade-offs. Here, we tested for the presence of such locomotor trade-offs depending on the environment (water or land) in a largely aquatic frog, Xenopus laevis. We focused on terrestrial and aquatic exertion capacity (time and distance swum or jumped until exhaustion) and aquatic and terrestrial burst capacity (maximal instantaneous swimming velocity and maximal force jump) given the ecological relevance of these traits. We tested these performance traits for trade-offs, depending on environments (water versus air) and locomotor modes (i.e. exertion and burst performance). Finally, we assessed the contribution of morphological traits to each performance trait. Our data show no trade-offs between the performance traits and between the environments, suggesting that X. laevis is equally good at swimming and jumping thanks to the same underlying morphological specialisations. We did observe, however, that morphological predictors differed depending on the environment, with variation in head shape and forelimb length being good predictors for aquatic locomotion and variation in hindlimb and forelimb segments predicting variation in jumping performance on land.

Funder

DSI-NRF Centre of Excellence for Invasion Biology

Stellenbosch University

MNHN 227 doctoral school

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3