Vocal characteristics of prairie dog alarm calls across an urban noise gradient

Author:

Shannon Graeme12ORCID,McKenna Megan F3,Wilson-Henjum Grete E2,Angeloni Lisa M4,Crooks Kevin R2,Wittemyer George2

Affiliation:

1. School of Natural Sciences, Bangor University, Bangor, Gwynedd, UK

2. Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA

3. Natural Sounds and Night Skies Division, National Park Service, Fort Collins, CO, USA

4. Department of Biology, Biology Building, Colorado State University, Fort Collins, CO, USA

Abstract

Abstract Increasing anthropogenic noise is having a global impact on wildlife, particularly due to the masking of crucial acoustical communication. However, there have been few studies examining the impacts of noise exposure on communication in free-ranging terrestrial mammals. We studied alarm calls of black-tailed prairie dogs (Cynomys ludovicianus) across an urban gradient to explore vocal adjustment relative to different levels of noise exposure. There was no change in the frequency 5%, peak frequency, or duration of the alarm calls across the noise gradient. However, the minimum frequency—a commonly used, yet potentially compromised metric—did indeed show a positive relationship with noise exposure. We suspect this is a result of masking of observable call properties by noise, rather than behavioral adjustment. In addition, the proximity of conspecifics and the distance to the perceived threat (observer) did affect the frequency 5% of alarm calls. These results reveal that prairie dogs do not appear to be adjusting their alarm calls in noisy environments but likely do in relation to their social context and the proximity of a predatory threat. Anthropogenic noise can elicit a range of behavioral and physiological responses across taxa, but elucidating the specific mechanisms driving these responses can be challenging, particularly as these are not necessarily mutually exclusive. Our research sheds light on how prairie dogs appear to respond to noise as a source of increased risk, rather than as a distraction or through acoustical masking as shown in other commonly studied species (e.g., fish, songbirds, marine mammals).

Funder

National Park Service

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3