Anthropogenic noise interacts with the predation risk assessment in a free-ranging bird

Author:

Matyjasiak Piotr1,Chacińska Patrycja2,Książka Piotr2

Affiliation:

1. Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw , Wóycickiego 1/3, PL-01-815 Warsaw , Poland

2. Department of Environmental Acoustics, Institute of Environmental Protection—National Research Institute , Kolektorska 4, PL-01-692 Warsaw , Poland

Abstract

Abstract Anthropogenic noise can affect a number of behavioral, physiological, and ecological aspects of animals from major taxonomic groups, raising serious conservation concerns. For example, noise pollution impacts communicative behavior and perception of signals, movements and distribution, as well as predator–prey interactions, such as hunting success or predator detection and predation risk assessment. We have carried out an experimental playback study, in which we investigated whether exposure to anthropogenic noise (sound of a tractor) distracts free-ranging barn swallows Hirundo rustica from paying attention to an approaching human “predator” (the “cognitive distraction” hypothesis), or whether noise leads to increased responsiveness to this “predator” (the “increased threat” hypothesis). The subjects were male barn swallows attending their breeding territories during the time when the females were incubating. We found that barn swallow males initiated flight at significantly greater distances to the approaching human “predator” in the noise treatment than during the quiet control trials. These results suggest that anthropogenic noise causes increased vigilance and reactivity rather than a distraction, enabling birds to avoid the “predator” more quickly. We further discuss the mechanism behind the increased alertness in response to noise and contrast the “increased threat” mechanism, usually tested in previous studies, with an alternative “cognitive sensitization” mechanism.

Funder

Cardinal Stefan Wyszyński University

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3