Affiliation:
1. Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Bourke Street, Richmond, NSW, Australia
2. Institute of Science and Learning, Taronga Conservation Society Australia, Bradley’s Head Rd, Mosman, 2088 NSW, Australia
Abstract
Abstract
Urbanization creates novel ecological spaces where some species thrive. Geographical urbanization promotes human–wildlife conflict; however, we know relatively little about the drivers of biological urbanization, which poses impediments for sound wildlife management and conservation action. Flying-foxes are extremely mobile and move nomadically in response to flowering resources, but are now increasingly found in urban areas, for reasons that are poorly understood. To investigate the mechanisms behind flying-fox urbanization, we examined the movement of 99 satellite tracked grey-headed flying-foxes (Pteropus poliocephalus) over 1 year in urban versus non-urban environments. We found that tracked individuals preferentially visited major-urban roosts, exhibited higher fidelity to major-urban roosts, and foraged over shorter distances when roosting in major-urban areas. In contrast to other colonial species, there were no density-dependent effects of colony size on foraging distance, suggesting that at a landscape scale, flying-foxes distribute themselves across roosts in an ideal-free manner, minimizing competition over urban and non-urban foraging resources. Yet, males consistently foraged over shorter distances than females, suggesting that at a local scale foraging distances reflect competitive inequalities between individuals. Overall, our study supports the hypothesis that flying-fox urbanization is driven by increased spatiotemporal availability of food resources in urban areas; however, unlike in other species, it is likely a consequence of increased urban visitation by nomadic individuals rather than a subset of the population becoming “urban residents” per se. We discuss the implications of the movement behavior we report for the conservation and management of highly mobile species.
Funder
Australian Research Council
Royal Botanic Gardens Sydney
Publisher
Oxford University Press (OUP)
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Reference122 articles.
1. Information theory and an extension of the maximum likelihood principle;Akaike,1998
2. The regulation of numbers of tropical oceanic birds;Ashmole;Ibis,1963
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献