Abstract
AbstractFood availability determines where animals use space across a landscape and therefore affects the risk of encounters that lead to zoonotic spillover. This relationship is evident in Australian flying foxes (Pteropusspp; fruit bats), where acute food shortages precede clusters of Hendra virus spillovers. Using explainable artificial intelligence, we predicted months of food shortages from climatological and ecological covariates (1996-2022) in eastern Australia. Overall accuracy in predicting months of low food availability on a test set from 2018 up to 2022 reached 93.33% and 92.59% based on climatological and bat-level features, respectively. Seasonality and Oceanic El Niño Index were the most important environmental features, while the number of bats in rescue centers and their body weights were the most important bat-level features. These models support predictive signals up to nine months in advance, facilitating action to mitigate spillover risk.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Torpor use in the wild by one of the world’s largest bats;Proceedings of the Royal Society B: Biological Sciences;2024-07