Studying predator foraging mode and hunting success at the individual level with an online videogame

Author:

Fraser Franco Maxime1ORCID,Santostefano Francesca1ORCID,Kelly Clint D1ORCID,Montiglio Pierre-Olivier1ORCID

Affiliation:

1. Département des Sciences Biologiques, Groupe de Recherche en Écologie et Évolution des Interactions Biologiques (GREEIB), Université du Québec à Montréal , Case postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8 , Canada

Abstract

AbstractPredator–prey interactions are important drivers of community and ecosystem dynamics. With an online multiplayer videogame, we propose a novel system to explore within population variation in predator hunting mode, and how predator–prey behavioral interactions affect predator hunting success. We empirically examined how four predator foraging behaviors covary at three hierarchical levels (among environments, among individuals, and within individuals) to assess the structure of predator hunting mode. We also investigated how prey activity affects the foraging behavior and hunting success of predators. Our study supports key findings on predator foraging mode and predator-prey interactions from behavioral ecology. We found that individual predators displayed a diversity of hunting tactics that were conditioned by prey behavior. With prey movement, individual predators specialized either as cursorial or ambush hunters along a continuum of their hunting traits, but also shifted their strategy between encounters. Both types of hunters were generally better against slower moving prey, and they achieved similar prey captures over the sampling period. This suggests that virtual worlds supporting multiplayer online videogames can serve as legitimate systems to advance our knowledge on predator–prey interactions.

Funder

Mitacs Accelerate Grant

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3