Competition for acoustic space in a temperate-forest bird community

Author:

Staniewicz Agata1ORCID,Sokołowska Emilia1ORCID,Muszyńska Adrianna1ORCID,Budka Michał1ORCID

Affiliation:

1. Department of Behavioural Ecology, Adam Mickiewicz University in Poznań , Uniwersytetu Poznańskiego 6, 61-614 Poznań , Poland

Abstract

Abstract Animals that communicate by acoustic signaling share a common acoustic environment. Birds are particularly vocal examples, using a wide repertoire of broadcast signals for mate attraction and territorial defense. However, interference caused by sounds that overlap in frequency and time can disrupt signal detection and reduce reproductive success. Here, we investigated competition avoidance mechanisms used by the bird community inhabiting a primeval lowland temperate forest in Białowieża, Eastern Poland. We recorded the dawn chorus at 84 locations in early and late spring and calculated dissimilarity indices of the broadcast signals to examine how species with greater song similarities use spatial and temporal partitioning to avoid competition for acoustic space throughout the breeding season. The bird community changed its use of acoustic space throughout the day and season. Birds did not use spatial partitioning of signal space when we looked at recording locations over the whole study period, but they did in a seasonal context, with species more acoustically different than expected by chance recorded at the same point in the same part of the season. Our results also indicate that daily temporal niche partitioning may only occur at certain times before sunrise, with no evidence of large-scale temporal partitioning between species vocalizing during the same 1-min recordings in daytime. These results contribute toward our understanding of the evolution of bird communication and highlight the strategies employed by different species to improve their signal transmission.

Funder

National Science Center, Poland

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3