Precocious Sperm Exchange in the Simultaneously Hermaphroditic Nudibranch, Berghia stephanieae

Author:

Taraporevala Neville F1,Lesoway Maryna P1ORCID,Goodheart Jessica A1ORCID,Lyons Deirdre C1ORCID

Affiliation:

1. Scripps Institution of Oceanography, University of California San Diego , 9500 Gilman Drive, La Jolla, CA 92093, USA

Abstract

Synopsis Sexual systems vary greatly across molluscs. This diversity includes simultaneous hermaphroditism, with both sexes functional at the same time. Most nudibranch molluscs are thought to be simultaneous hermaphrodites, but detailed studies of reproductive development and timing remain rare as most species cannot be cultured in the lab. The aeolid nudibranch, Berghia stephanieae, is one such species that can be cultured through multiple generations on the benchtop. We studied B. stephanieae reproductive timing to establish when animals first exchange sperm and how long sperm can be stored. We isolated age- and size-matched individuals at sequential timepoints to learn how early individuals can exchange sperm. Individuals isolated at 10 weeks post initial feeding (wpf; ∼13 weeks postlaying [wpl]) can produce fertilized eggs. This is 6 weeks before animals first lay egg masses, indicating that sperm exchange occurs well before individuals are capable of laying eggs. Our results indicate that male gonads become functional for animals between 6 mm (∼6 wpf, ∼9 wpl) and 9 mm (∼12 wpf, ∼15 wpl) in length. That is much smaller (and sooner) than the size (and age) of individuals at first laying (12–19 mm; ∼16 wpf, ∼19 wpl), indicating that male and female functions do not develop simultaneously. We also tracked the number of fertilized eggs in each egg mass, which remained steady for the first 10–15 egg masses, followed by a decline to near-to-no fertilization. This dataset provides insights into the precise timing of the onset of functionality of the male and female reproductive systems in B. stephanieae. These data contribute to a broader understanding of reproductive development and the potential for understanding the evolution of diverse sexual systems in molluscs.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3