Psychologists have long been interested in the relationship between visualization and the mechanisms of human reasoning. Mathematicians have been aware of the value of diagrams and other visual tools both for teaching and as heuristics for mathematical discovery. As the chapters in this volume show, such tools are gaining even greater value, thanks in large part to the graphical potential of modern computers. But despite the obvious importance of visual images in human cognitive activities, visual representation remains a second-class citizen in both the theory and practice of mathematics. In particular, we are all taught to look askance at proofs that make crucial use of diagrams, graphs, or other nonlinguistic forms of representation, and we pass on this disdain to our students. In this chapter, we claim that visual forms of representation can be important, not just as heuristic and pedagogic tools, but as legitimate elements of mathematical proofs. As logicians, we recognize that this is a heretical claim, running counter to centuries of logical and mathematical tradition. This tradition finds its roots in the use of diagrams in geometry. The modern attitude is that diagrams are at best a heuristic in aid of finding a real, formal proof of a theorem of geometry, and at worst a breeding ground for fallacious inferences. For example, in a recent article, the logician Neil Tennant endorses this standard view: . . . [The diagram] is only an heuristic to prompt certain trains of inference; . . . it is dispensable as a proof-theoretic device; indeed, . . . it has no proper place in the proof as such. For the proof is a syntactic object consisting only of sentences arranged in a finite and inspectable array (Tennant [1984]). . . . It is this dogma that we want to challenge. We are by no means the first to question, directly or indirectly, the logocentricity of mathematics arid logic. The mathematicians Euler and Venn are well known for their development of diagrammatic tools for solving mathematical problems, and the logician C. S. Peirce developed an extensive diagrammatic calculus, which he intended as a general reasoning tool.