Ice Clouds in Numerical Weather Prediction Models: Progress, Problems, and Prospects

Author:

Jakob Christian

Abstract

The properties of cirrus, as well as the role ice clouds play in the atmosphere, have been extensively described in the previous chapters. To represent the effects of cirrus in atmospheric models, several intimately linked processes need to be described. These processes include the generation and dissipation of ice clouds as well as their interaction with the radiative fluxes throughout the atmosphere. In this chapter the cloud parameterization aspects of this problem (i.e., the treatment of the generation and dissipation of ice clouds), are discussed in the context of global numerical weather prediction (NWP) models. Aspects of the radiative transfer in ice clouds can be found in chapter 13. The main focus of the current chapter is on the cloud parameterization used in the global forecast model of the European Centre for Medium-Range Weather Forecasts (ECMWF). This parameterization will serve as an example in highlighting the progress made, the problems encountered, and the prospects for improving the representation of ice clouds in atmospheric models. The principles of representing clouds in global NWP models are identical to those in general circulation models (GCMs) used for climate research (see chapter 15). Although ice clouds are the focus of this book, a substantial part of this chapter will be concerned with the overall treatment of clouds in numerical models of the atmosphere. In fact, many models used in NWP today distinguish ice clouds from mixed-phase and water clouds only as a function of temperature. Cloud parameterizations in GCMs have evolved rapidly over the last few years. Section 16.2 is a general overview of the progress made. Section 16.3 will describe the cloud parameterization that is currently used in the ECMWF forecast model as a specific example for a state-of-the-art cloud parameterization in NWP. General aspects of the simulation of ice clouds with this model will be presented. GCM simulations of the atmosphere are very sensitive to the treatment of clouds in general (Senior and Mitchell 1993; Rasch and Kristjansson 1998) and to assumptions about cloud ice in particular (Fowler et al. 1996; Jakob and Morcrette 1995). Section 16.4 gives an example of those sensitivities and the model design problems that can arise when model sensitivities exist in combination with a lack of observations, as noted for cloud ice by Stephens et al. (1998).

Publisher

Oxford University Press

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Temporal and vertical distributions of the occurrence of cirrus clouds over a coastal station in the Indian monsoon region;Atmospheric Chemistry and Physics;2022-06-28

2. TRAIL part 2: A comprehensive assessment of ice particle fall speed parametrisations;Quarterly Journal of the Royal Meteorological Society;2020-11-02

3. TRAIL: A novel approach for studying the aerodynamics of ice particles;Quarterly Journal of the Royal Meteorological Society;2020-11-02

4. Ice Particle Properties Inferred From Aggregation Modelling;Journal of Advances in Modeling Earth Systems;2020-07-29

5. Laboratory measurements of sedimentation velocity of columnar ice crystals;Quarterly Journal of the Royal Meteorological Society;2016-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3