Temporal and vertical distributions of the occurrence of cirrus clouds over a coastal station in the Indian monsoon region

Author:

Ali Saleem,Mehta Sanjay Kumar,Ananthavel Aravindhavel,Reddy Tondapu Venkata Ramesh

Abstract

Abstract. Knowledge of the spatiotemporal coverage of cirrus clouds is vital in quantifying the radiation budget of the Earth–atmosphere system. In this paper, we present the diurnal and vertical distributions of the occurrence of cirrus clouds during different seasons as well as the interannual variation in the occurrence of cirrus over Kattankulathur (12.82∘ N, 80.04∘ E) on the west coast of the Bay of Bengal. Long-term (2016–2018) continuous micropulse lidar (MPL) observations demonstrate laminar and descending cirrus clouds that occur either as single or multiple layers. The single-layer cirrus occurrence shows a diurnal pattern with frequent occurrence in the late evening (∼ 30 %–40 %), whereas multilayer cirrus clouds occur in the early morning (∼ 10 %–20 %). For the diurnal pattern in single-layer cirrus cloud occurrences, convective processes dominate during the pre-monsoon, southwest (SW) monsoon, and northeast (NE) monsoon seasons, while the freeze-drying process is favorable during the winter season. However, both convective and freeze-drying processes are dominant in the diurnal pattern of the multilayer cirrus occurrences. The occurrence reaches a maximum (∼ 40 %) during the SW and NE monsoon seasons, and it shows a minimum (∼ 25 %) during the winter season. The vertical distributions indicate that the maximum occurrence is confined within the tropical tropopause layer (TTL) during all seasons. Cirrus cloud rarely occurs above the tropopause; however, it frequently occurs below the TTL during all seasons. The vertical extent of the occurrence has a broader altitudinal coverage (∼ 8–17 km) during December–March and June–September, while the altitudinal coverage is narrower during April–May (∼ 10–17 km) and October–November (∼ 9–15 km). Cirrus cloud occurrence also exhibits interannual variations, with higher occurrence during 2016 compared with 2017 and 2018, in association with the El Niño–Southern Oscillation (ENSO).

Funder

Science and Engineering Research Board

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3