Genomic features of meiotic crossovers in diploid potato

Author:

Jiang Xiuhan12,Li Dawei2,Du Hui2,Wang Pei2,Guo Liang1,Zhu Guangtao3,Zhang Chunzhi12

Affiliation:

1. Huazhong Agricultural University National Key Laboratory of Crop Genetic Improvement, , Wuhan 430070, China

2. Chinese Academy of Agricultural Sciences Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, , Shenzhen, Guangdong 518120, China

3. Yunnan Normal University The AGISCAAS-YNNU Joint Academy of Potato Sciences, , Kunming, Yunnan 650500, China

Abstract

Abstract Meiotic recombination plays an important role in genome evolution and crop improvement. Potato (Solanum tuberosum L.) is the most important tuber crop in the world, but research about meiotic recombination in potato is limited. Here, we resequenced 2163 F2 clones derived from five different genetic backgrounds and identified 41 945 meiotic crossovers. Some recombination suppression in euchromatin regions was associated with large structural variants. We also detected five shared crossover hotspots. The number of crossovers in each F2 individual from the accession Upotato 1 varied from 9 to 27, with an average of 15.5, 78.25% of which were mapped within 5 kb of their presumed location. We show that 57.1% of the crossovers occurred in gene regions, with poly-A/T, poly-AG, AT-rich, and CCN repeats enriched in the crossover intervals. The recombination rate is positively related with gene density, SNP density, Class II transposon, and negatively related with GC density, repeat sequence density and Class I transposon. This study deepens our understanding of meiotic crossovers in potato and provides useful information for diploid potato breeding.

Funder

China National Key Research and Development Program

National Natural Science Foundation of China

Natural Science Foundation of Shenzhen

National Science Fund of Yunnan for Distinguished Young Scholars

Agricultural Science and Technology Innovation Program

Science Technology and Innovation Commission of Shenzhen Municipality of China

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3