Potato tonoplast sugar transporter 1 controls tuber sugar accumulation during postharvest cold storage

Author:

Liu Tengfei1ORCID,Kawochar Md Abu12,Begum Shahnewaz12,Wang Enshuang1,Zhou Tingting1,Jing Shenglin1,Liu Tiantian1,Yu Liu1,Nie Bihua1ORCID,Song Botao1

Affiliation:

1. Huazhong Agricultural University Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, , Wuhan 430070 China

2. Bangladesh Agricultural Research Institute , Joydebpur, Gazipur 1701, Bangladesh

Abstract

Abstract Cold-induced sweetening (CIS), the undesirable sugar accumulation in cold-stored potato (Solanum tuberosum L.) tubers, is a severe postharvest issue in the potato processing industry. Although the process of sucrose hydrolysis by vacuolar invertase during potato CIS is well understood, there is limited knowledge about the transportation of sucrose from the cytosol to the vacuole during postharvest cold storage. Here, we report that among the three potato tonoplast sugar transporters (TSTs), StTST1 exhibits the highest expression in tubers during postharvest cold storage. Subcellular localization analysis demonstrates that StTST1 is a tonoplast-localized protein. StTST1 knockdown decreases reducing sugar accumulation in tubers during low-temperature storage. Compared to wild-type, potato chips produced from StTST1-silenced tubers displayed significantly lower acrylamide levels and lighter color after cold storage. Transcriptome analysis manifests that suppression of StTST1 promotes starch synthesis and inhibits starch degradation in cold-stored tubers. We further establish that the increased sucrose content in the StTST1-silenced tubers might cause a decrease in the ABA content, thereby inhibiting the ABA-signaling pathway. We demonstrate that the down-regulation of β-amylase StBAM1 in StTST1-silenced tubers might be directly controlled by ABA-responsive element-binding proteins (AREBs). Altogether, we have shown that StTST1 plays a critical role in sugar accumulation and starch metabolism regulation during postharvest cold storage. Thus, our findings provide a new strategy to improve the frying quality of cold-stored tubers and reduce the acrylamide content in potato chips.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3