Affiliation:
1. Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL 61801
2. Division of Nutritional Sciences, University of Illinois at Urbana-Champaign , Urbana, IL 61801
Abstract
Abstract
The pet food market is constantly changing and adapting to meet the needs and desires of pets and their owners. One trend that has been growing in popularity lately is the feeding of fresh, human-grade foods. Human-grade pet foods contain ingredients that have all been stored, handled, processed, and transported in a manner that complies with regulations set for human food production. While most human-grade pet foods are based on animal-derived ingredients, vegan options also exist. To our knowledge, no in vivo studies have been conducted to analyze the performance of human-grade vegan diets. Therefore, the objective of this study was to investigate the amino acid (AA) digestibility and nitrogen-corrected true metabolizable energy (TMEn) of mildly cooked human-grade vegan dog foods using precision-fed cecectomized rooster and conventional rooster assays. Three commercial dog foods were tested. Two were mildly cooked human-grade vegan dog diets (Bramble Cowbell diet (BC); Bramble roost diet (BR)), while the third was a chicken-based extruded dog diet (chicken and brown rice recipe diet (CT)). Prior to the rooster assays, both mildly cooked diets were lyophilized, and then all three diets were ground. Diets were fed to cecectomized roosters to determine AA digestibility, while conventional roosters were used to determine TMEn. All data were analyzed using the mixed models procedure of SAS (version 9.4). The majority of indispensable and dispensable AA across all diets had digestibilities higher than 80%, with a few exceptions (BC: histidine, lysine, threonine, and valine; BR: histidine). The only difference in indispensable AA digestibility among diets was observed with tryptophan, with its digestibility being higher (P = 0.0163) in CT than in BC. TMEn values were higher (P = 0.006) in BC and BR (4.55 and 4.66 kcal/g dry matter, respectively) than that in CT (3.99 kcal/g dry matter). The TMEn/GE was also higher (P = 0.0193) in BR than in CT. Metabolizable energy (ME) estimates using Atwater factors accurately estimated the energy content of CT, but modified Atwater factors and the predictive equations for ME recommended by the National Research Council underestimated energy content. All calculations underestimated the measured TMEn values of BC and BR, with Atwater factors being the closest. Although testing in dogs is required, these data suggest that mildly cooked human-grade vegan dog diets are well-digested. Moreover, TMEn data suggest that existing methods and equations underestimate the ME of the mildly cooked human-grade vegan foods tested.
Publisher
Oxford University Press (OUP)
Subject
General Veterinary,Animal Science and Zoology