Evaluation of a Bacillus-based direct-fed microbial probiotic on in vitro rumen gas production and nutrient digestibility of different feedstuffs and total mixed rations

Author:

Cappellozza Bruno I1ORCID,Joergensen Jens N1,Copani Giuseppe1,Bryan Keith A2,Fantinati Paolo1,Bodin Jean-Christophe1,Khahi Mohammad Malek3,NinoDeGuzman Carlos3,Arriola Kathy G3,Lima Laís O3,Farooq Samia3,Vyas Diwakar3ORCID

Affiliation:

1. Chr. Hansen A/S , Hørsholm 2970 , Denmark

2. North America Technical Services, Chr. Hansen Inc. , Milwaukee, WI 53214 , USA

3. Department of Animal Sciences, University of Florida , Gainesville, FL 32611 , USA

Abstract

Abstract We evaluated the effects of a Bacillus-based direct-fed microbial (DFM) on total in vitro gas production, dry matter (DM), neutral detergent fiber (NDF), and starch disappearance of different feedstuffs and total mixed rations (TMR) in three different experiments. In experiment 1, six single fiber-based feedstuffs were evaluated: alfalfa hay, buffalo grass, beet pulp, eragrostis hay, oat hay, and smutsvinger grass. Experimental treatments were control (with no probiotic inoculation; CON) or incubation of a probiotic mixture containing Bacillus licheniformis and B. subtilis (3.2 × 109 CFU/g; DFM). The calculation of DFM dose under in vitro conditions was based on the assumption of a rumen capacity of 70 liter and the dose of 3 g of the DFM mixture/head/d (9.6 × 109 CFU). Total in vitro gas production, DM, and NDF disappearance were evaluated at 24- and 48 h posttreatment incubation. Mean treatment effects were observed at 24- and 48 h gas production (P < 0.0001), as DFM incubation increased in vitro gas production by 5.0% and 6.5%, respectively. For nutrient digestibility, mean DM digestibility was increased at 48 h (P = 0.05), whereas mean NDF digestibility increased at both timepoints by incubating DFM in vitro (P ≤ 0.02). In experiment 2, nine commercial dairy TMR were collected and evaluated for the same variables and treatments described in experiment 1, with the additional analysis of starch digestibility at 7 h post in vitro incubation. The only difference was the concentration of the DFM included, being representative for a dosage of 8.8 × 109 CFU/head/d. In vitro gas production was increased only at 48 h due to DFM incubation (P = 0.05), whereas DM and NDF digestibility were improved at 24 and 48 h (P ≤ 0.02). No treatment effects were observed on in vitro starch digestibility (P = 0.31). In experiment 3, a combined analysis of DM and NDF digestibility was performed by using quality values (NDF and crude protein or CP) of 16 substrates. Regardless of CP and NDF levels of the substrates, DFM improved in vitro 24 and 48 h DM and NDF digestibility (P ≤ 0.03). In summary, incubating a Bacillus-based DFM (B. licheniformis and B. subtilis; BOVACILLUS) improved mean in vitro gas production, DM, and NDF digestibility of single feedstuffs and commercial dairy TMR, highlighting the potential of this combination of Bacillus spp. to improve nutrient utilization, mainly fiber.

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

Reference34 articles.

1. Bacillus subtilis biofilm induction by plant polysaccharides;Beauregard;Proc. Natl. Acad. Sci. USA,2013

2. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality;Bernardeau;J. Food Sci. Technol,2017

3. Comparison of in vitro gas production and nylon bag degradability of roughages in prediction of feed intake in cattle;Blümmel;Anim. Feed Sci. Technol,1993

4. Lactobacillus animalis LA51 and Bacillus sp. probiotics confer protection from the damaging effects of pathogenic Clostridium perfringens and Escherichia coli on the intestinal barrier;Copani;J. Dairy Sci.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3