Novel Synthetic oviductal fluid for Conventional Freezing 1 (SCF1) culture medium improves development and cryotolerance of in vitro produced Holstein embryos

Author:

Owen Corie M1ORCID,Johnson Melissa A1,Rhodes-Long Katherine A1,Gumber Diana J1,Barceló-Fimbres Moises,Altermatt Joy L1,Campos-Chillon Lino Fernando1

Affiliation:

1. Department of Animal Sciences, California Polytechnic State University, San Luis Obispo, CA 93405, USA

Abstract

Abstract In vitro produced (IVP) embryos hold great promise in the cattle industry; however, suboptimal in vitro culture conditions induce metabolic dysfunction, resulting in poor development and low cryotolerance of IVP embryos. This limits the use of IVP embryos in the cattle industry for embryo transfer and commercial scale-up. Previous studies have reported the use of individual metabolic regulators in culture media to improve blastocyst development rates and cryopreservation. In this study, we hypothesized that using a combination of select regulators, chosen for their unique synergistic potential, would alleviate metabolic dysfunction and improve the development of in vitro produced embryos to make them more closely resemble in vivo derived embryos. To test this, we first compared lipid content between Holstein and Jersey embryos produced in vivo and in vitro, and then systematically determined the combination of metabolic regulators that led to the greatest improvements in embryonic development, lipid content, mitochondrial polarity, and cryotolerance. We also tested different slow freezing techniques to further improve cryotolerance and finally validated our results via a clinical trial. Overall, we found that the use of multiple metabolic regulators in one culture media, which we refer to as Synthetic oviductal fluid for Conventional Freezing 1 (SCF1), and an optimized slow freezing technique resulted in improved pregnancy rates for frozen IVP embryos compared to embryos cultured in a synthetic oviductal fluid media. Additionally, there was no difference in pregnancy rate between frozen and fresh IVP embryos cultured in SCF1. This suggests that optimizing culture conditions and slow freezing technique can produce cryotolerance IVP and should allow further dissemination of this assisted reproductive technology.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3