Affiliation:
1. Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
2. Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
Abstract
Oocyte vitrification is crucial for livestock reproduction, germplasm conservation, and human-assisted reproduction, but the overabundance of lipids is highly detrimental to oocyte development. It is necessary to reduce the lipid droplet content of oocytes before cryopreservation. This study analyzed the impact of β-nicotinamide mononucleotide (NMN), berberine (BER), or cordycepin (COR) on various aspects of bovine oocytes, including lipid droplet content and the expression levels of genes related to lipid synthesis in bovine oocytes, development ability, reactive oxygen species (ROS), apoptosis, and the expression levels of genes associated with endoplasmic reticulum (ER) stress, and mitochondrial function in vitrified bovine oocytes. The results of our study indicated that 1 μM NMN, 2.5 μM BER, and 1 μM COR were effective in reducing the lipid droplet content and suppressing the expression levels of genes involved in lipid synthesis in bovine oocytes. Our findings showed that the vitrified bovine oocytes treated with 1 μM of NMN had a significantly higher survival rate and better development ability compared to the other vitrified groups. Additionally, 1 μM NMN, 2.5 μM BER, and 1 μM COR decreased the levels of ROS and apoptosis, decreased the mRNA expression levels of genes involved in ER stress and mitochondrial fission but increased the mRNA expression levels of genes associated with mitochondrial fusion in the vitrified bovine oocytes. Our study results suggested that 1 μM NMN, 2.5 μM BER, and 1 μM COR effectively decreased the lipid droplet content and enhanced the development ability of vitrified bovine oocytes by lowering ROS levels, reducing ER stress, regulating mitochondrial function, and inhibiting apoptosis. Furthermore, the results showed that 1 μM NMN was more effective than 2.5 μM BER and 1 μM COR.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Natural Science Foundation of Beijing
Earmarked Fund for CAR
Transformation Fund Program for Agricultural Science and Technology Achievements of Hebei Province
Key Research and Development Program of Hebei Province
National Germplasm Center of Domestic Animal Resources and the Agricultural Science and Technology Innovation Program
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献