Tandem mass tag labeling to assess proteome differences between intermediate and very tender beef steaks

Author:

Dang David S1,Zhai Chaoyu2ORCID,Nair Mahesh N2,Thornton Kara J3ORCID,Sawalhah Mohammed N4ORCID,Matarneh Sulaiman K1

Affiliation:

1. Department of Nutrition, Dietetics and Food Sciences, Utah State University , Logan, UT 84322 , USA

2. Department of Animal Sciences, Colorado State University , Fort Collins, CO 80523 , USA

3. Department of Animal, Dairy and Veterinary Sciences, Utah State University , Logan, UT 84322 , USA

4. Department of Lands Management and Environment, Prince Al-Hasan Bin Talal Faculty for Natural Resources and Environment, The Hashemite University , Zarqa 13133 , Jordan

Abstract

Abstract Tenderness is considered as one of the most important quality attributes dictating consumers’ overall satisfaction and future purchasing decisions of fresh beef. However, the ability to predict and manage tenderness has proven very challenging due to the numerous factors that contribute to variation in end-product tenderness. Proteomic profiling allows for global examination of differentially abundant proteins in the meat and can provide new insight into biological mechanisms related to meat tenderness. Hence, the objective of this study was to examine proteomic profiles of beef longissimus lumborum (LL) steaks varying in tenderness, with the intention to identify potential biomarkers related to tenderness. For this purpose, beef LL muscle samples were collected from 99 carcasses at 0 and 384 h postmortem. Based on Warner–Bratzler shear force values at 384 h, 16 samples with the highest (intermediate tender, IT) and lowest (very tender, VT) values were selected to be used for proteomic analysis in this study (n = 8 per category). Using tandem mass tag-based proteomics, a total of 876 proteins were identified, of which 51 proteins were differentially abundant (P < 0.05) between the tenderness categories and aging periods. The differentially identified proteins encompassed a wide array of biological processes related to muscle contraction, calcium signaling, metabolism, extracellular matrix organization, chaperone, and apoptosis. A greater (P < 0.05) relative abundance of proteins associated with carbohydrate metabolism and apoptosis, and a lower (P < 0.05) relative abundance of proteins involved in muscle contraction was observed in the VT steaks after aging compared with the IT steaks, suggesting that more proteolysis occurred in the VT steaks. This may be explained by the greater (P < 0.05) abundance of chaperonin and calcium-binding proteins in the IT steaks, which could have limited the extent of postmortem proteolysis in these steaks. In addition, a greater (P < 0.05) abundance of connective tissue proteins was also observed in the IT steaks, which likely contributed to the difference in tenderness due to added background toughness. The established proteomic database obtained in this study may provide a reference for future research regarding potential protein biomarkers that are associated with meat tenderness.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3