Impact of housing environment and management on pre-/post-weaning piglet productivity

Author:

Ramirez Brett C1ORCID,Hayes Morgan D2,Condotta Isabella C F S3,Leonard Suzanne M4

Affiliation:

1. Department of Agricultural and Biosystems Engineering, Iowa State University , Ames, IA 50011 , USA

2. Department of Biosystems and Agricultural Engineering, University of Kentucky , Lexington, KY 40546 , USA

3. Department of Animal Sciences, University of Illinois Urbana-Champaign , Urbana, IL 61801 , USA

4. Department of Animal Science, North Carolina State University , Raleigh, NC 27695 , USA

Abstract

Abstract The complex environment surrounding young pigs reared in intensive housing systems directly influences their productivity and livelihood. Much of the seminal literature utilized housing and husbandry practices that have since drastically evolved through advances in genetic potential, nutrition, health, and technology. This review focuses on the environmental interaction and responses of pigs during the first 8 wk of life, separated into pre-weaning (creep areas) and post-weaning (nursery or wean-finish) phases. Further, a perspective on instrumentation and precision technologies for animal-based (physiological and behavioral) and environmental measures documents current approaches and future possibilities. A warm microclimate for piglets during the early days of life, especially the first 12 h, is critical. While caretaker interventions can mitigate the extent of hypothermia, low birth weight remains a dominant risk factor for mortality. Post-weaning, the thermoregulation capabilities have improved, but subsequent transportation, nutritional, and social stressors enhance the requisite need for a warm, low draft environment with the proper flooring. A better understanding of the individual environmental factors that affect young pigs as well as the creation of comprehensive environment indices or improved, non-contact sensing technology is needed to better evaluate and manage piglet environments. Such enhanced understanding and evaluation of pig–environment interaction could lead to innovative environmental control and husbandry interventions to foster healthy and productive pigs.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3