Serum metabolomic characterization in pigs in relation to birth weight category and neonatal nutrition

Author:

Wellington Michael O12ORCID,Rodrigues Lucas A12,Quinn Melissa A3,Panisson Josiane C2,Ferguson David P3,Columbus Daniel A12ORCID

Affiliation:

1. Prairie Swine Centre, Inc. , Box 21057, 2105-8th Street East, Saskatoon, SK , Canada S7H 5N9

2. Department of Animal and Poultry Science, University of Saskatchewan , 51 Campus Drive, Saskatoon, SK , Canada S7N 5A8

3. Department of Kinesiology, Michigan State University , 308 West Circle Drive, East Lansing, MI 48824 , USA

Abstract

AbstractThe objective of this study was to characterize developmental differences in low birth weight (LBW) and normal birth weight (NBW) piglets with or without pre-weaning nutrient restriction using serum metabolomic profile analysis. At farrowing, 112 piglets were identified as LBW (1.22 ± 0.28 kg) or NBW (1.70 ± 0.27 kg) and were randomly assigned to receive normal nutrition (NN) or restricted nutrition (RN) (6 h/day no suckling) from days 2 to 28 post farrow (n = 8 pigs/group). On day 28, piglets were weaned onto a common diet. Fasted blood samples were obtained on days 28 and 56 (n = 8 pigs/group) and were analyzed using quantitative metabolomics via a combination of direct injection mass spectrometry with a reverse-phase LC–MS/MS custom assay. Data were normalized using logarithmic transformation and auto-scaling. Partial least squares discriminant analysis (PLS-DA) was carried out to further explore the differential metabolites among the groups (metaboanalyst.ca) with an integrated enrichment and pathway topography analysis. On day 28, LBW piglets had lower levels of essential amino acids as well as reduced metabolites associated with fatty acid oxidation, glycolysis, and the tri-carboxylic acid (TCA) cycle compared to the NBW group. The overall reduction of metabolites associated with energy production and regulation suggests that LBW vs. NBW are in an energy-survival state. On day 56, LBW pigs had increased utilization of fatty acids and resultant ketone production, evident by increased carnitines, acetoacetate, β-hydroxybutyrate, and glycerol compared to NBW pigs. In addition, compared to the NBW pigs LBW pigs had a consistent decrease in serum glucose and lactate as well as reduced TCA cycle metabolites: pyruvate, succinate, citrate, and α-ketoglutaric acid similar to day 28. Low reliance on glycolysis and the TCA cycle and higher glycerol production in the LBW pigs may indicate impairments in glucose tolerance at 56 d. In summary, LBW piglets appear to have more metabolic alterations in early life, which is not resolved with adequate nutrition or refeeding and may elucidate physiological and metabolic mechanisms of poor growth and life performance compared to NBW pigs later in life.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3