Corn processing, flake density, and starch retrogradation influence ruminal solubility of starch, fiber, protein, and minerals

Author:

Trotta Ronald J1,Kreikemeier Kelly K2,Royle Randy F3,Milton Todd4,Harmon David L1ORCID

Affiliation:

1. Department of Animal and Food Sciences, University of Kentucky , Lexington, KY 40546 , USA

2. Hoxie Feedyard, Foote Cattle Co. , Hoxie, KS 67740 , USA

3. ServiTech Inc. , Dodge City, KS 67801 , USA

4. Midwest PMS , Firestone, CO 80504 , USA

Abstract

Abstract Five ruminally cannulated steers (body weight = 390 ± 7.86 kg) were used in three experiments to evaluate effects of corn processing, flake density, and starch retrogradation on in situ ruminal degradation. In experiment 1, corn was left whole or processed with no screen, ground through a 6-mm screen, or ground through a 1-mm screen. In experiment 2, we produced steam-flaked corn at four densities: 309, 335, 360, and 386 g/L. These four flake densities were sifted for 20 s through a 4-mm screen to produce two particle sizes within each flake density: sifted flakes (>4 mm) and sifted fines (<4 mm). In experiment 3, sifted flakes (335 g/L) were stored for 3-d at either 23 °C (starch availability = 55%) or 55 °C to induce starch retrogradation (starch availability = 41%). All samples for each of the three experiments were weighed into nylon bags and ruminally incubated for 0-h to estimate the soluble fraction. The residue remaining was analyzed for nutrient composition. In experiment 1, whole shelled corn had lesser (P < 0.01) ruminal solubility of all nutrients measured compared with ground corn. Corn ground with a screen (6 and 1 mm) had greater (P < 0.01) ruminal solubility of all nutrients measured compared with corn ground with no screen. Corn ground through a 1-mm screen had greater (P < 0.03) ruminal solubility of DM, total starch, CP, ADF, AHF, P, Mg, K, S, Zn, Fe, and Mn compared with corn ground through a 6-mm screen. In experiment 2, increasing flake density linearly decreased (P < 0.02) the soluble fraction of DM, total starch, CP, ADF, AHF, P, K, S, and Zn of sifted flakes. The soluble DM fraction of sifted fines tended to decrease (P = 0.06) linearly with increasing flake density. Total starch, CP, NDF, and Zn soluble fractions of sifted fines were not influenced by flake density. In experiment 3, storage of sifted flakes in heat-sealed foil bags at 55 °C for 3-d decreased (P < 0.04) the soluble fractions of DM, total starch, CP, NDF, P, Mg, K, S, and Fe. With each increase in the degree of corn processing, there was an increase in the solubility of nutrients. Increasing flake density can decrease ruminal solubility of flakes; however, the soluble fraction of sifted fines is not influenced as much by changes in flake density. Inducing starch retrogradation decreases ruminal solubility of starch, nonstarch OM, and minerals.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3