In vitro gas production kinetics are influenced by grain processing, flake density, starch retrogradation, andAspergillus oryzaefermentation extract containing α-amylase activity

Author:

Schiff Amanda P1,Trotta Ronald J1,Holder Vaughn2,Kreikemeier Kelly K3,Harmon David L1ORCID

Affiliation:

1. Department of Animal and Food Sciences, University of Kentucky , Lexington, KY 40546 , USA

2. Center for Animal Nutrigenomics and Applied Animal Nutrition, Alltech Biotechnology Inc. , Nicholasville, KY 40356 , USA

3. Hoxie Feedyard, Foote Cattle Co. , Hoxie, KS 67740 , USA

Abstract

AbstractGrain processing such as particle size, flake density, or starch retrogradation can influence ruminal degradability characteristics; however, it is unclear how exogenous α-amylase supplementation interacts with different processed grains. Four experiments were conducted to compare the effects of Aspergillus oryzae fermentation extract (Amaize; Alltech Biotechnology Inc., Nicholasville, KY) supplementation on in vitro gas production kinetics of grain substrates with different processing methods that are common in the feedlot industry. In experiment 1, corn processing (dry-rolled, high-moisture, steam-flaked) and Amaize supplementation (0 or 15 U α-amylase activity/100 mL) were evaluated in a 3 × 2 factorial arrangement of treatments. The rate of gas production for dry-rolled corn was higher (P < 0.001) with Amaize supplementation. In experiment 2, flake density (296, 322, 348, 373, and 399 g/L) and starch retrogradation (storage in heat-sealed foil bags for 3 d at 23 or 55°C) were evaluated in a 5 × 2 factorial arrangement of treatments. There was a flake density × starch retrogradation interaction (P < 0.01) for the rate of gas production because the decrease in the rate of gas production with starch retrogradation was greater at lighter flake densities compared with heavier flake densities. In experiment 3, Amaize supplementation was evaluated across flake densities of nonretrograded steam-flaked corn (stored at 23°C) used in experiment 2. There was a flake density × Amaize interaction (P < 0.01) for the rate of gas production where Amaize supplementation resulted in a lower rate of gas production at lighter flake densities (296, 322, and 348 g/L) but a higher rate of gas production at heavier flake densities (373 and 399 g/L). In experiment 4, Amaize supplementation was evaluated across flake densities of retrograded steam-flaked corn (stored at 55°C) used in experiment 2. Gas production was lower after 24 h with Amaize supplementation for retrograded flakes produced to a density of 322 and 399 g/L while Amaize supplementation did not influence gas production at 24 h at other flake densities. There was a flake density × Amaize interaction for the rate of gas production because Amaize supplementation resulted in a faster (P < 0.01) rate of gas production for all flake densities except retrograded flakes produced to a density of 296 g/L. Enzymatic starch availability was positively correlated with the rate of gas production. These data demonstrate that supplementation of 15 U/100 mL of Amaize resulted in greater rates of gas production for dry-rolled corn, corn steam-flaked to heavier densities, and retrograded steam-flaked corn.

Funder

Alltech Biotechnology Inc

University of Kentucky Agricultural Experiment Station

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3