Evaluation of Pretreatment and Extraction Parameters for the Analysis of Fentanyl in Hair Using Statistical Design of Experiments (DoE)

Author:

Spear Brianna1,DeCaprio Anthony P1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry and the International Forensic Research Institute, Florida International University , 11200 SW Eighth Street, Miami, FL 33199, USA

Abstract

Abstract Optimal methods for hair analysis are often debated. Previous work in this laboratory demonstrated that the statistical technique known as Design of Experiments (DoE) is useful for such optimization. DoE evaluates both the individual roles and the combinatorial associations among multiple independent variables (i.e., hair pretreatment parameters) and a dependent variable (i.e., drug recovery from hair). In this study, hair externally contaminated with fentanyl underwent decontamination with combinations of parameters based on a 24 fractional factorial block design DoE matrix. The parameters of interest included aqueous wash solvent (1% sodium dodecyl sulfate (SDS) or water), organic wash solvent (dichloromethane or methanol), number of consecutive washes (one or three), sequence of washes (aqueous first or organic first) and wash time (30 s or 30 min). The optimal method for decontaminating fentanyl from the hair surface was found to be one 30-min wash with dichloromethane followed by one 30-min wash with water. Pretreatment parameters were optimized with a 23 full factorial DoE matrix using authentic hair reference material (HRM), which consisted of pooled drug user hair diluted to a known concentration of fentanyl with drug-free hair. The factors of interest were extraction solvent/sample weight ratio (12.5 or 25 µL/mg), hair particle size (pulverized or 1 mm segments) and extraction time (2 or 24 h). The most effective pretreatment method for fentanyl consisted of pulverizing the hair prior to a 2-h extraction in a 25 µL/mg extraction solvent volume/sample weight ratio. Finally, using the optimized pretreatment methods, fentanyl containing authentic HRM was extracted using aqueous base, solvent and enzymatic hair extraction methods, where it was determined that the aqueous base technique was most effective for recovery of fentanyl. These experiments further demonstrate the value of DoE and authentic HRM in method development for forensic hair analysis.

Funder

National Institute of Justice

Publisher

Oxford University Press (OUP)

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology,Environmental Chemistry,Analytical Chemistry

Reference27 articles.

1. Fentanyl-related compounds and derivatives: current status and future prospects for pharmaceutical applications;Vardanyan;Future Medicinal Chemistry,2014

2. Changes in synthetic opioid involvement in drug overdose deaths in the United States, 2010–2016;Jones;Journal of the American Medical Association,2018

3. Society of Hair Testing guidelines for drug testing in hair;Cooper;Forensic Science International,2012

4. Fentanyl in hair: chemical factors involved in accumulation and retention of fentanyl in hair after external exposure or in vivo deposition;Stout;Drug Metabolism and Disposition,1998

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3