Depth-correlated backscattered electron signal intensity for 3D-profile measurement of high aspect ratio holes

Author:

Sun Wei1,Ohta Hiroya2,Ninomiya Taku2,Goto Yasunori2,Sohta Yasunari1

Affiliation:

1. Hitachi, Ltd, Research & Development Group, Kokubunji-shi, Tokyo, Japan

2. Hitachi High-Technologies Corporation, Hitachinaka-shi, Ibaraki, Japan

Abstract

Abstract In-line metrology for measuring 3D features of the high aspect ratio (HAR) holes is becoming more challenging due to the progressing semiconductor technology, particularly in memory devices. Measurements of the bottom critical dimension (CD), taper angles and 3D profiles of the HAR holes require new imaging capabilities. In this work, we explored the characteristics of high-energy backscattered electron (BSE) signals and demonstrated their promising application to 3D metrology. From Monte Carlo simulation results, it is worth noting that BSE signal intensity emitted from an irradiated location in the depth of the hole decreases exponentially with the increase of the depth from the top surface (perpendicular depth) of the hole. Furthermore, the influences of various factors including the electron energy, the depth and the sidewall angle (SWA) of the hole on the attenuation of the BSE signal intensity were investigated. The simulation results show that the attenuation of the BSE signal intensity depends on the electron energy, the depth and the density of the hole but is independent of the SWA and the incident angle of the primary electron beam. Based on the characteristics of the BSE signal intensity, an algorithm was proposed for the 3D metrology of the HAR holes. Finally, the differences in CDs between the measured value and the target value of HAR holes with various geometries were examined. A maximum measurement bias within ±2.0 nm for various holes with different depths, densities and SWA values shows great potential of depth-correlated BSE signals in 3D metrology.

Funder

Makoto Suzuki of Hitachi High-Technologies

Borisov Sergei of aBeam Technologies

Publisher

Oxford University Press (OUP)

Subject

Radiology Nuclear Medicine and imaging,Instrumentation,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning model for 3D profiling of high-aspect-ratio features using high-voltage CD-SEM;Japanese Journal of Applied Physics;2022-05-26

2. High-voltage CD-SEM-based application to monitor 3D profile of high-aspect-ratio features;Journal of Micro/Nanolithography, MEMS, and MOEMS;2020-05-12

3. Accuracy improvement of 3D-profiling for HAR features using deep learning;Metrology, Inspection, and Process Control for Microlithography XXXIV;2020-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3