Affiliation:
1. Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
Abstract
Abstract
In-liquid frequency modulation atomic force microscopy (FM-AFM) has been used for visualizing subnanometer-scale surface structures of minerals, organic thin films and biological systems. In addition, three-dimensional atomic force microscopy (3D-AFM) has been developed by combining it with a three-dimensional (3D) tip scanning method. This method enabled the visualization of 3D distributions of water (i.e. hydration structures) and flexible molecular chains at subnanometer-scale resolution. While these applications highlighted the unique capabilities of FM-AFM, its force resolution, speed and stability are not necessarily at a satisfactory level for practical applications. Recently, there have been significant advancements in these fundamental performances. The force resolution was dramatically improved by using a small cantilever, which enabled the imaging of a 3D hydration structure even in pure water and made it possible to directly compare experimental results with simulated ones. In addition, the improved force resolution allowed the enhancement of imaging speed without compromising spatial resolution. To achieve this goal, efforts have been made for improving bandwidth, resonance frequency and/or latency of various components, including a high-speed phase-locked loop (PLL) circuit. With these improvements, now atomic-resolution in-liquid FM-AFM imaging can be performed at ∼1 s/frame. Furthermore, a Si-coating method was found to improve stability and reproducibility of atomic-resolution imaging owing to formation of a stable hydration structure on a tip apex. These improvements have opened up new possibilities of atomic-scale studies on solid-liquid interfacial phenomena by in-liquid FM-AFM.
Funder
Japan Society for the Promotion of Science
Ministry of Education, Culture, Sports, Science and Technology
Japan Science and Technology Agency
Publisher
Oxford University Press (OUP)
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Structural Biology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献