Unsupervised Deep Learning Can Identify Protein Functional Groups from Unaligned Sequences

Author:

David Kyle T1ORCID,Halanych Kenneth M2ORCID

Affiliation:

1. Department of Biological Sciences, Auburn University , Auburn, Alabama , USA

2. Center for Marine Sciences, University of North Carolina Wilmington , Wilmington, North Carolina , USA

Abstract

Abstract Interpreting protein function from sequence data is a fundamental goal of bioinformatics. However, our current understanding of protein diversity is bottlenecked by the fact that most proteins have only been functionally validated in model organisms, limiting our understanding of how function varies with gene sequence diversity. Thus, accuracy of inferences in clades without model representatives is questionable. Unsupervised learning may help to ameliorate this bias by identifying highly complex patterns and structure from large data sets without external labels. Here, we present DeepSeqProt, an unsupervised deep learning program for exploring large protein sequence data sets. DeepSeqProt is a clustering tool capable of distinguishing between broad classes of proteins while learning local and global structure of functional space. DeepSeqProt is capable of learning salient biological features from unaligned, unannotated sequences. DeepSeqProt is more likely to capture complete protein families and statistically significant shared ontologies within proteomes than other clustering methods. We hope this framework will prove of use to researchers and provide a preliminary step in further developing unsupervised deep learning in molecular biology.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Reference52 articles.

1. Basic local alignment search tool;Altschul;J Mol Biol.,1990

2. Gene Ontology: tool for the unification of biology;Ashburner;Nat Genet.,2000

3. Visualizing population structure with variational autoencoders;Battey;G3 Genes|Genomes|Genetics,2021

4. Unsupervised feature learning and deep learning: a review and new perspectives. CoRR, abs/1206.5538. 1:2012;Bengio,2012

5. Estimating or propagating gradients through stochastic neurons for conditional computation;Bengio,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3