PRIEST: predicting viral mutations with immune escape capability of SARS-CoV-2 using temporal evolutionary information

Author:

Saha Gourab1,Sawmya Shashata1,Saha Arpita1,Akil Md Ajwad1,Tasnim Sadia1,Rahman Md Saifur1,Rahman M Sohel1

Affiliation:

1. Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology , Dhaka , Bangladesh

Abstract

Abstract The dynamic evolution of the severe acute respiratory syndrome coronavirus 2 virus is primarily driven by mutations in its genetic sequence, culminating in the emergence of variants with increased capability to evade host immune responses. Accurate prediction of such mutations is fundamental in mitigating pandemic spread and developing effective control measures. This study introduces a robust and interpretable deep-learning approach called PRIEST. This innovative model leverages time-series viral sequences to foresee potential viral mutations. Our comprehensive experimental evaluations underscore PRIEST’s proficiency in accurately predicting immune-evading mutations. Our work represents a substantial step in utilizing deep-learning methodologies for anticipatory viral mutation analysis and pandemic response.

Publisher

Oxford University Press (OUP)

Reference51 articles.

1. The prediction of virus mutation using neural networks and rough set techniques;Salama;EURASIP J Bioinf Syst Biol,2016

2. Tempel: time-series mutation prediction of influenza a viruses via attention-based recurrent neural networks;Yin;Bioinformatics,2020

3. Long short-term memory neural networks for rna viruses mutations prediction;Mohamed;Math Probl Eng,2021

4. Predicting mutational effects on receptor binding of the spike protein of sars-cov-2 variants;Bai;J Am Chem Soc,2021

5. Analyzing hcov genome sequences: predicting virulence and mutation;Sawmya,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3