A Long-Standing Hybrid Population Between Pacific and Atlantic Herring in a Subarctic Fjord of Norway

Author:

Pettersson Mats E1ORCID,Fuentes-Pardo Angela P1,Rochus Christina M1,Enbody Erik D1,Bi Huijuan1,Väinölä Risto2,Andersson Leif13ORCID

Affiliation:

1. Department of Medical Biochemistry and Microbiology, Uppsala University , Uppsala , Sweden

2. Finnish Museum of Natural History, University of Helsinki , Helsinki , Finland

3. Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station , Texas

Abstract

Abstract Atlantic herring (Clupea harengus) and Pacific herring (C. pallasii) are sister species that split from a common ancestor about 2 million years ago. Balsfjord, a subarctic fjord in Northern Norway, harbors an outpost population of Pacific herring within the range of the Atlantic herring. We used whole genome sequencing to show that gene flow from Atlantic herring into the Balsfjord population has generated a stable hybrid population that has persisted for thousands of generations. The Atlantic herring ancestry in Balsfjord was estimated in the range 25–26%. The old age and large proportion of introgressed regions suggest there are no obvious genetic incompatibilities between species. Introgressed regions were widespread in the genome and large, with some in excess of 1 Mb, and they were overrepresented in low-recombination regions. We show that the distribution of introgressed material is non-random; introgressed sequence blocks in different individuals are shared more often than expected by chance. Furthermore, introgressed regions tend to show elevated divergence (FST) between Atlantic and Pacific herring. Together, our results suggest that introgression of genetic material has facilitated adaptation in the Balsfjord population. The Balsfjord population provides a rare example of a stable interspecies hybrid population that has persisted over thousands of years.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3