Phylogenomic Testing of Root Hypotheses

Author:

Tria Fernando D K1ORCID,Landan Giddy1ORCID,Picazo Devani Romero1ORCID,Dagan Tal1ORCID

Affiliation:

1. Institute of General Microbiology, Kiel University , Kiel , Germany

Abstract

Abstract The determination of the last common ancestor (LCA) of a group of species plays a vital role in evolutionary theory. Traditionally, an LCA is inferred by the rooting of a fully resolved species tree. From a theoretical perspective, however, inference of the LCA amounts to the reconstruction of just one branch—the root branch—of the true species tree and should therefore be a much easier task than the full resolution of the species tree. Discarding the reliance on a hypothesized species tree and its rooting leads us to reevaluate what phylogenetic signal is directly relevant to LCA inference and to recast the task as that of sampling the total evidence from all gene families at the genomic scope. Here, we reformulate LCA and root inference in the framework of statistical hypothesis testing and outline an analytical procedure to formally test competing a priori LCA hypotheses and to infer confidence sets for the earliest speciation events in the history of a group of species. Applying our methods to two demonstrative data sets, we show that our inference of the opisthokonta LCA is well in agreement with the common knowledge. Inference of the proteobacteria LCA shows that it is most closely related to modern Epsilonproteobacteria, raising the possibility that it may have been characterized by a chemolithoautotrophic and anaerobic life style. Our inference is based on data comprising between 43% (opisthokonta) and 86% (proteobacteria) of all gene families. Approaching LCA inference within a statistical framework renders the phylogenomic inference powerful and robust.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Reference56 articles.

1. Controlling the false discovery rate: a practical and powerful approach to multiple testing;Benjamini;J R Stat Soc Series B Stat Methodol,1995

2. Root digger: a root placement program for phylogenetic trees;Bettisworth;BMC Bioinform,2021

3. Realistic gene transfer to gene duplication ratios identify different roots in the bacterial phylogeny using a tree reconciliation method;Bremer;Life,2022

4. The versatile ε-proteobacteria: key players in sulphidic habitats;Campbell;Nat Rev Microbiol,2006

5. The effect of nonreversibility on inferring rooted phylogenies;Cherlin;Mol Biol Evol,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3