Realistic Gene Transfer to Gene Duplication Ratios Identify Different Roots in the Bacterial Phylogeny Using a Tree Reconciliation Method

Author:

Bremer NicoORCID,Knopp Michael,Martin William F.ORCID,Tria Fernando D. K.

Abstract

The rooting of phylogenetic trees permits important inferences about ancestral states and the polarity of evolutionary events. Recently, methods that reconcile discordance between gene-trees and species-trees—tree reconciliation methods—are becoming increasingly popular for rooting species trees. Rooting via reconciliation requires values for a particular parameter, the gene transfer to gene duplication ratio (T:D), which in current practice is estimated on the fly from discordances observed in the trees. To date, the accuracy of T:D estimates obtained by reconciliation analyses has not been compared to T:D estimates obtained by independent means, hence the effect of T:D upon inferences of species tree roots is altogether unexplored. Here we investigated the issue in detail by performing tree reconciliations of more than 10,000 gene trees under a variety of T:D ratios for two phylogenetic cases: a bacterial (prokaryotic) tree with 265 species and a fungal-metazoan (eukaryotic) tree with 31 species. We show that the T:D ratios automatically estimated by a current tree reconciliation method, ALE, generate virtually identical T:D ratios across bacterial genes and fungal-metazoan genes. The T:D ratios estimated by ALE differ 10- to 100-fold from robust, ALE-independent estimates from real data. More important is our finding that the root inferences using ALE in both datasets are strongly dependent upon T:D. Using more realistic T:D ratios, the number of roots inferred by ALE consistently increases and, in some cases, clearly incorrect roots are inferred. Furthermore, our analyses reveal that gene duplications have a far greater impact on ALE’s preferences for phylogenetic root placement than gene transfers or gene losses do. Overall, we show that obtaining reliable species tree roots with ALE is only possible when gene duplications are abundant in the data and the number of falsely inferred gene duplications is low. Finding a sufficient sample of true gene duplications for rooting species trees critically depends on the T:D ratios used in the analyses. T:D ratios, while being important parameters of genome evolution in their own right, affect the root inferences with tree reconciliations to an unanticipated degree.

Funder

European Research Council

Volkswagen Foundation

Moore Simons Initiative on the Origin of the Eukaryotic Cell

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3