PM2.5 induces inflammatory responses via oxidative stress-mediated mitophagy in human bronchial epithelial cells

Author:

Zhai Xuedi1,Wang Jianshu2,Sun Jiaojiao1,Xin Lili1ORCID

Affiliation:

1. School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China

2. Department of Environment Health, Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou 215004, Jiangsu, China

Abstract

Abstract Background Fine particulate matter (PM2.5) is a ubiquitous air pollutant, and it has been reported to be closely associated with lung inflammatory injury. In this study, the potential molecular mechanisms underlying PM2.5-induced cellular inflammation in human bronchial epithelial (BEAS-2B) cells were investigated. Materials and methods Ambient PM2.5 particulates from Suzhou, China, were collected and re-suspended in ultrapure water. Cellular damages, characterized by oxidative stress, mitochondrial injury, and inflammatory cytokine production, were determined in 24 h PM2.5-treated BEAS-2B cells with or without 3-methyladenine (3-MA; autophagy inhibitor) pretreatment. Biomarkers related to oxidative damage, inflammatory injury and autophagy signaling pathways were also measured. Results Uptake of PM2.5 in BEAS-2B cells induced cellular oxidative damage, mitochondrial injury, and inflammatory responses as indicated by a significant decrease in GSH/GSSG ratio, increased MDA content, dilated mitochondria with loss and rupture of crista, and production of inflammatory cytokines. Activation of Nrf-2/TXNIP-mediated NF-κB and Bnip3L/NIX-dependent mitophagy signaling pathways, as well as accumulation of autophagosomes and autolysosomes, were also observed. A 6 h pretreatment of 3-MA increased PM2.5-induced oxidative damage and cellular inflammation as indicated by increasing protein levels of HO-1, TXNIP, Bnip3L/NIX and IL-8 gene expression. Conclusions PM2.5 induced cellular inflammatory injury by oxidative stress, mitochondrial dysfunction, and mitophagy initiation. Although induction of Bnip3L/NIX-mediated mitophagy in BEAS-2B cells appeared to confer protection in response to PM2.5, dysfunction of autophagic flux may be a critical contributor to defective mitophagy and cellular inflammatory response.

Funder

Open project of Key Laboratory of Environment and Health, Ministry of Education

Youth Program of Reinvigorating the Health

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3