Grape seed proanthocyanins protect fluoride-induced hepatotoxicity via the Nrf2 signaling pathway in male rats

Author:

Wei Ran1ORCID,Ping Guan Fang23,Lang Zhe Tao1ORCID,Wang Er Hui1ORCID

Affiliation:

1. School of medicine, Shaoxing University , No. 900 Chengnan Avenue, Shaoxing, Zhejiang 312000 , China

2. Department of Pharmacy , the First Affiliated Hospital, , No. 88 Jiankang Road, Weihui, Henan 453100 , China

3. Xinxiang Medical University , the First Affiliated Hospital, , No. 88 Jiankang Road, Weihui, Henan 453100 , China

Abstract

Abstract Background Fluoride is a necessary element for human health, but excessive fluoride intake is found toxic to the liver. Previous studies confirmed that Grape seed procyanidin extract (GSPE) protects against fluoride-induced hepatic injury. However, the mechanism underlying this protective effect remains obscure. To evaluate the protective effect of GSPE against fluoride-induced hepatic injury and explore the possible hepatoprotective role of the Nrf2 signaling pathway to find effective strategies for the treatment and prevention of fluoride-induced hepatotoxicity. This study aims to explore the mechanisms by which GSPE attenuates fluoride-induced hepatotoxicity through a rat drinking water poisoning model. Methods Hepatic injury was determined by serum biochemical parameters, oxidative parameters, HE, and TUNEL analysis. The protein expression levels of apoptosis-related proteins like Bax, B-cell lymphoma-2 (Bcl-2), and Caspase-3 and the nuclear factor, erythroid 2 like 2 (Nrf2) were analyzed by Western blot. Resluts Our results showed that GSPE administration reduced fluoride-induced elevated serum ALT and AST and enhanced the antioxidant capacity of the liver. In addition, GSPE mitigated fluoride-induced histopathological damage and reduced the liver cell apoptosis rate. Furthermore, GSPE significantly up-regulated the expression and nuclear translocation of the Nrf2 and decreased apoptosis-related proteins like Bax and caspase-3 in the hepatic. Conclusion Taken together, GSPE exerts protective effects on the oxidative damage and apoptosis of fluoride-induced hepatic injury via the activation of the Nrf2 signaling pathway. This study provides a new perspective for the mechanism study and scientific prevention and treatment of liver injury induced by endemic fluorosis.

Funder

Shaoxing University

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3