Effects of acrylamide exposure during pregnancy and lactation on the development of myelin sheath of corpus callosum in offspring rats

Author:

Liu Shuping1,Yang Dehui2,Dong Suqiu1,Luo Yuyou1,Zhang Tong1,Li Siyuan1,Bai Yanxian1,Li Lixia1,Ma Yuxin1,Liu Jing1ORCID

Affiliation:

1. Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University , No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006 , PR China

2. Lianjiang People’s Hospital , No. 30 Renmin Avenue Middle, Lianjiang City, Zhanjiang City, Guangdong Province, Lianjiang 524400 , PR China

Abstract

Abstract Acrylamide is an alkene known to induce neurotoxicity in humans and experimental animals. However, the effects of acrylamide on the development of myelin sheath are unclear. The present study was to explore the effects of acrylamide exposure during pregnancy and lactation on the development of myelin sheath in offspring rats. Four groups of thirty-two pregnant Sprague–Dawley rats were exposed to 0, 4.5, 9 and 18 mg/kg BW acrylamide by gavage from gestational day 15 to postnatal day 13. The corpus callosum of nine offspring rats per group were dissected in postpartum day 14. Structural changes and lipid contents in myelin sheaths were examined by transmission electron microscopy(TEM) and Luxol Fast Blue staining(LFB). The expression of MBP and PLP was evaluated by immunohistochemistry and Western blotting. TEM showed that the myelin sheaths in the 18 mg/kg group were disordered compared with control group. Luxol Fast Blue staining gradually decreased with increasing acrylamide maternal exposure. The immunohistochemistry and Western Blotting results showed that maternal exposure to acrylamide caused a decreasing trend in MBP and PLP in the corpus callosum of rats at postnatal day 14. Furthermore, these reduced protein levels may be neurodevelopmental toxicity’s mechanism in response to maternal exposure to acrylamide.

Funder

Guangdong Provincial Department of Science and Technology in China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3