Hydroquinone exposure accumulates neutral lipid by the activation of CDP-DAG pathway in Saccharomyces cerevisiae

Author:

Raj Abhishek12,Nachiappan Vasanthi1ORCID

Affiliation:

1. Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India

2. Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China

Abstract

Abstract Benzene metabolites (HQ and BQ) are toxic compounds and their presence in human cause alteration in cellular respiration and kidney damage. In the current study, Saccharomyces cerevisiae has been used as a model organism and acute exposure of hydroquinone (HQ) decreased cell growth and increased reactive oxygen species (ROS). The expression of apoptosis regulatory genes (YCA1, NUC1, YSP1 and AIF1) were increased with HQ exposure in the wild-type cells. HQ exposure in the wild-type cells altered both the phospholipid and neutral lipid levels. Phosphatidylcholine is a vital membrane lipid that has a vital role in membrane biogenesis and was increased significantly with HQ. The neutral lipid results were supported with lipid droplets data and mRNA expression study. The phospholipid knockouts (Kennedy pathway) accumulated neutral lipids via the CDP-DAG (cytidine-diphosphate-diacylglycerol) pathway genes both in the presence and absence of HQ.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

Reference44 articles.

1. Possible mechanisms of carcinogenesis after exposure to benzene;Golding;IARC Sci Publ,1999

2. Final amended safety assessment of hydroquinone as used in cosmetics;Andersen;Int J Toxicol,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3