Assessment of synthetic food dye erythrosine induced cytotoxicity, genotoxicity, biochemical and molecular alterations in Allium cepa root meristematic cells: insights from in silico study

Author:

Singh Mandeep1ORCID,Chadha Pooja1ORCID

Affiliation:

1. Guru Nanak Dev University Department of Zoology, , Amritsar, Punjab, 143005 , India

Abstract

Abstract Background Synthetic food dyes are being exponentially used in food products and scarce studies regarding their toxicities and safety raise concern. Erythrosine is one of the synthetic food dyes being used in jams, fig, pineapple marmalades, dairy products, soft drinks, pickles, relishes, smoked fish, cheese, ketchup, maraschino cherries and a variety of other foods. Methodology In this study the cyto-genotoxic effect of erythrosine was evaluated, using root meristematic cells of Allium cepa for the cellular and molecular alternations at concentrations 0.1, 0.25, 0.5 and 1 mg/mL. Results The results revealed a significant decrease of 57.81% in the mitotic index after 96 h at the 0.1 mg/mL concentration. In biochemical analysis, the malondialdehyde content increased significantly (5.47-fold), while proline content, catalase activity and superoxide dismutase activity decreased gradually in a concentration-dependent manner showing a maximum decrease of 78.11%, 64.68% and 61.73% respectively at the highest concentration after 96 h duration. The comet assay revealed increased DNA damage with increasing concentration and attenuated total reflectance- Fourier transform infrared spectroscopy (ATR-FTIR) analysis showed significant alterations in biomolecules as indicated by multivariate analysis, i.e. Principal Component Analysis (PCA). Furthermore, molecular docking demonstrated a strong binding energy (Gbest = −11.46 kcal/mol) and an inhibition constant (Ki) of 3.96 nM between erythrosine and the DNA minor groove. Conclusion The present study’s findings revealed the cytotoxic and genotoxic potential of erythrosine on A. cepa root cells. Further, the study also proposed the usefulness of A. cepa as a model system for studying the toxicity of food additives. Highlights Erythrosine showed prominent cytotoxicity with complete inhibition of mitosis at 0.25 mg/mL conc. High level of genotoxicity revealed by 3.68-fold increment in chromosomal aberrations (CAs) frequency at lowest concentration (0.1 mg/mL). The increased MDA level, reduced CAT, SOD activity and proline content showed significant biochemical changes in antioxidant system. Alternations in biomolecules viz. protein, lipid and nucleic acid region showed by ATR-FITR spectrum and confirmed statistically by multivariate analysis of spectrum. In silico model supports the finding as the lower binding free energy of −11.46 kcal/mol between erythrosine and DNA structure was calculated.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3