A Systematic Review of Artificial Intelligence and Machine Learning Applications to Inflammatory Bowel Disease, with Practical Guidelines for Interpretation

Author:

Stafford Imogen S123ORCID,Gosink Mark M4,Mossotto Enrico1,Ennis Sarah1,Hauben Manfred45

Affiliation:

1. Human Genetics and Genomic Medicine, University of Southampton , Southampton , UK

2. Institute for Life Sciences, University Of Southampton , Southampton , UK

3. NIHR Southampton Biomedical Research, University Hospital Southampton, Southampton , UK

4. Pfizer Inc , New York, NY , USA

5. NYU Langone Health, Department of Medicine , New York, NY , USA

Abstract

Abstract Background Inflammatory bowel disease (IBD) is a gastrointestinal chronic disease with an unpredictable disease course. Computational methods such as machine learning (ML) have the potential to stratify IBD patients for the provision of individualized care. The use of ML methods for IBD was surveyed, with an additional focus on how the field has changed over time. Methods On May 6, 2021, a systematic review was conducted through a search of MEDLINE and Embase databases, with the search structure (“machine learning” OR “artificial intelligence”) AND (“Crohn* Disease” OR “Ulcerative Colitis” OR “Inflammatory Bowel Disease”). Exclusion criteria included studies not written in English, no human patient data, publication before 2001, studies that were not peer reviewed, nonautoimmune disease comorbidity research, and record types that were not primary research. Results Seventy-eight (of 409) records met the inclusion criteria. Random forest methods were most prevalent, and there was an increase in neural networks, mainly applied to imaging data sets. The main applications of ML to clinical tasks were diagnosis (18 of 78), disease course (22 of 78), and disease severity (16 of 78). The median sample size was 263. Clinical and microbiome-related data sets were most popular. Five percent of studies used an external data set after training and testing for additional model validation. Discussion Availability of longitudinal and deep phenotyping data could lead to better modeling. Machine learning pipelines that consider imbalanced data and that feature selection only on training data will generate more generalizable models. Machine learning models are increasingly being applied to more complex clinical tasks for specific phenotypes, indicating progress towards personalized medicine for IBD.

Funder

University of Southampton

National Institute for Health Research

Publisher

Oxford University Press (OUP)

Subject

Gastroenterology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3